본문 바로가기

카테고리 없음

[코딩] K최근접, 선형회귀, 다항회귀, 다중회귀, 릿지, 라쏘(f.혼자 공부하는 머신러닝 딥러닝

반응형
목차

0. 데이터

1. 선형회귀

  가. train/test 나누기

  나. 2차원 배열 변환

  다. 스코어 확인

  라. 이웃3으로 변경하여 ax + b에서 a,b값 구하기

  마. 선형 그래프 그리기, 산점도, 50cm, 1241.8cm 데이터

  바. 스코어 확인(R**2)

 

 

2. 다항회귀

  가. 2차원 배열

  나. 훈련

  다. 그래프그리기

  라. 스코어 확인

 

3. 다중회귀

  가. 사이킷럿 변환기

  나. 정규화

  다. 릿지(Lidge)

    1) Lidge적용 및 스코어 확인

    2) alpha 그래프 작성 후 값 도출

    3) 적용

  라. 라쏘(Lasso)

    1) Lasso 적용 및 스코어 확인

    2) alpha 그래프 작성 후 값 도출

    3) 적용

 

 


 

데이터
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

perch_length = np.array(
    [8.4, 13.7, 15.0, 16.2, 17.4, 18.0, 18.7, 19.0, 19.6, 20.0, 
     21.0, 21.0, 21.0, 21.3, 22.0, 22.0, 22.0, 22.0, 22.0, 22.5, 
     22.5, 22.7, 23.0, 23.5, 24.0, 24.0, 24.6, 25.0, 25.6, 26.5, 
     27.3, 27.5, 27.5, 27.5, 28.0, 28.7, 30.0, 32.8, 34.5, 35.0, 
     36.5, 36.0, 37.0, 37.0, 39.0, 39.0, 39.0, 40.0, 40.0, 40.0, 
     40.0, 42.0, 43.0, 43.0, 43.5, 44.0]
     )
perch_weight = np.array(
    [5.9, 32.0, 40.0, 51.5, 70.0, 100.0, 78.0, 80.0, 85.0, 85.0, 
     110.0, 115.0, 125.0, 130.0, 120.0, 120.0, 130.0, 135.0, 110.0, 
     130.0, 150.0, 145.0, 150.0, 170.0, 225.0, 145.0, 188.0, 180.0, 
     197.0, 218.0, 300.0, 260.0, 265.0, 250.0, 250.0, 300.0, 320.0, 
     514.0, 556.0, 840.0, 685.0, 700.0, 700.0, 690.0, 900.0, 650.0, 
     820.0, 850.0, 900.0, 1015.0, 820.0, 1100.0, 1000.0, 1100.0, 
     1000.0, 1000.0]
     )
df = pd.read_csv('https://bit.ly/perch_csv_data')
perch_full = df.to_numpy()
perch_weight = np.array(
    [5.9, 32.0, 40.0, 51.5, 70.0, 100.0, 78.0, 80.0, 85.0, 85.0, 
     110.0, 115.0, 125.0, 130.0, 120.0, 120.0, 130.0, 135.0, 110.0, 
     130.0, 150.0, 145.0, 150.0, 170.0, 225.0, 145.0, 188.0, 180.0, 
     197.0, 218.0, 300.0, 260.0, 265.0, 250.0, 250.0, 300.0, 320.0, 
     514.0, 556.0, 840.0, 685.0, 700.0, 700.0, 690.0, 900.0, 650.0, 
     820.0, 850.0, 900.0, 1015.0, 820.0, 1100.0, 1000.0, 1100.0, 
     1000.0, 1000.0]
     )

 

선형회귀
from sklearn.model_selection import train_test_split

#훈련/테스트 세트로 나누기
train_input, test_input, train_target, test_target = train_test_split(perch_length, perch_weight, random_state = 42)

#2차원배열 변환
train_input = train_input.reshape(-1,1)
test_input = test_input.reshape(-1,1)
print(train_input.shape, test_input.shape)
#파이썬에서는 1*2의 1차원 배열형태이나, 사이파이에서는 2*1의 2차원 배열을 사용해야 함

#회귀모델 스코어
from sklearn.neighbors import KNeighborsRegressor
knr = KNeighborsRegressor()
knr.fit(train_input, train_target)
print(knr.score(test_input, test_target))  # →0.99

#회귀 모델을 이웃3으로 변경하여 농어50cm 예측
knr.n_neighbors = 3
knr.fit(train_input, train_target)
print(knr.predict([[50]]))  # → 1033.33

#선형회귀로 농어 50cm 예측
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(train_input, train_target)
print(lr.predict([[50]]))  #→1241.83
print(lr.coef_, lr.intercept_)  #→[39.0] -709

#선형 그래프 그리기, 산점도, 50cm, 1241.8cm 데이터
plt.scatter(train_input, train_target)
plt.plot([15,50], [15*lr.coef_ + lr.intercept_, 50*lr.coef_+ lr.intercept_])
plt.scatter(50, 1241.8, marker = '^')
plt.show

#스코어 확인(R**2)
print(lr.score(train_input, train_target)) #0.93
print(lr.score(test_input, test_target))  #0.82

 

다항회귀
#다항회귀 2차원 배열
train_poly = np.column_stack((train_input**2, train_input))
test_poly = np.column_stack((test_input**2, test_input))
print(train_poly.shape, test_poly.shape)

#훈련
lr = LinearRegression()
lr.fit(train_poly, train_target)

print(lr.predict([[50**2, 50]]))
print(lr.coef_, lr.intercept_)

#그래프 그리기
point = np.arange(15,50)
plt.scatter(train_input, train_target)
plt.plot(point, 1.01*point**2 -21.6*point + 116.05 )
plt.scatter(50, 1574, marker = '^')
plt.show()

#스코어 확인
print(lr.score(train_poly, train_target))
print(lr.score(test_poly, test_target))

 

 

다중회귀
#다중회귀
from sklearn.model_selection import train_test_split
train_input, test_input, train_target, test_target = train_test_split(perch_full, perch_weight, random_state = 42)

from sklearn.preprocessing import PolynomialFeatures
poly = PolynomialFeatures(include_bias = False)  #1인 특성 제거
poly.fit(train_input)
train_poly = poly.transform(train_input)
test_poly = poly.transform(test_input)
print(train_poly.shape)  #→ (42,9)  즉, 9개의 특성을 가짐. 
#poly.get_feature_names_out()
#→ array(['x0', 'x1', 'x2', 'x0^2', 'x0 x1', 'x0 x2', 'x1^2', 'x1 x2','x2^2'], dtype=object)
#poly.fit([[2,3]])
#print(poly.transform([[2,3]]))
#→[[2,3,4,6,9]]

#다중회귀 모델 훈련
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(train_poly, train_target)
#print(lr.score(train_poly, train_target))  →0.99
#print(lr.score(test_poly, test_target))   →0.97

#5제곱까지 특성을 넣으면
poly = PolynomialFeatures(degree = 5, include_bias = False)
poly.fit(train_input)
train_poly = poly.transform(train_input)
test_poly = poly.transform(test_input)
print(train_poly.shape)  # → 특성이 55개나 됨

#정규화 세팅
from sklearn.preprocessing import StandardScaler
ss = StandardScaler()
ss.fit(train_poly)
train_scaled = ss.transform(train_poly)
test_scaled = ss.transform(test_poly)

 

다중회귀 - 릿지
#릿지
from sklearn.linear_model import Ridge
ridge = Ridge()
ridge.fit(train_scaled, train_target)
print(ridge.score(train_scaled, train_target))
print(ridge.score(test_scaled, test_target))

#릿지의 적절한 alpha값을 찾기 위해
train_score = []
test_score = []

alpha_list = [0.001, 0.01, 0.1, 1, 10, 100]
for alpha in alpha_list:
  ridge = Ridge(alpha = alpha)
  ridge.fit(train_scaled, train_target)
  train_score.append(ridge.score(train_scaled, train_target))
  test_score.append(ridge.score(test_scaled, test_target))

plt.plot(np.log10(alpha_list), train_score)
plt.plot(np.log10(alpha_list), test_score)
plt.xlabel('alpha')
plt.ylabel('R^2')
plt.show()
#→즉 0.1일 때 최적값

ridge = Ridge(alpha = 0.1)
ridge.fit(train_scaled, train_target)
print(ridge.score(train_scaled, train_target))
print(ridge.score(test_scaled, test_target))

 

 

다중회귀 - 라쏘
#라쏘
from sklearn.linear_model import Lasso
lasso = Lasso()
lasso.fit(train_scaled, train_target)
print(lasso.score(train_scaled, train_target))
print(lasso.score(test_scaled, test_target))

#점수계산
train_score = []
test_score = []
alpha_list = [0.001, 0.01, 0.1, 1, 10, 100]
for alpha in alpha_list:
  lasso = Lasso(alpha = alpha, max_iter = 10000)
  lasso.fit(train_scaled, train_target)
  train_score.append(lasso.score(train_scaled, train_target))
  test_score.append(lasso.score(test_scaled, test_target))
#그래프 그려서 찾아내기
plt.plot(np.log10(alpha_list), train_score)
plt.plot(np.log10(alpha_list), test_score)
plt.xlabel('alpha')
plt.ylabel('R^2')
plt.show() 
#→ 최적값은 1^1(10)

lasso = Lasso(alpha = 10)
lasso.fit(train_scaled, train_target)
print(lasso.score(train_scaled, train_target))
print(lasso.score(test_scaled, test_target))

※ 출처 : 혼자 공부하는 머신러닝 딥러닝

반응형